So much for the mantra that science must be made "relevant to students' daily lives."

I should not be surprised. I

*can*dutifully and with some determination work up a bit of interest for the functioning of car engines, but only a little bit. I majored in Physics.

Why do we think that math problems will be more engaging to students if they are about bake sales, CD shopping, and other real world applications? And those little vignettes in the textbook that purport to explain how useful and applicable all this math will be - why do they always seem so

*contrived*? Who thinks that a note in the margin stating that "If you become an ornithologist, you may use polynomial functions to study the flight patterns of birds!" will be more convincing to the kids than it is to us? And if the value of high school math for students' daily living were so clear cut, why isn't the case made more forcefully after so many years of textbooks?

Svein Sjøberg of the ROSE project argues that the reason why

*all*students should learn science is

*not*primarily that this knowledge will be so useful to them in their daily lives, nor should it be society's need for a sufficient supply of engineers and technicians. He instead emphasizes 1) the cultural argument and 2) the democratic argument. All citizens need to learn science because science, like arts and history and poetry, is a part of our common human heritage. Also, political decisions about issues involving science ought to be made by an informed electorate.

By the same line of reasoning, primary rationales for learning math could also be the cultural and political weight that

*this*subject carries. Humans have calculated, devised and solved puzzles, and developed multiplicities of algorithms in all kinds of cultures throughout thousands of years. Accessing some of this heritage is part of the enculturation of a person in today's world - it is a privilege, not something we need to excuse or justify with awkwardly implausible future employment scenarios. As for the democratic significance of math, must not an informed electorate be able to interpret data displays and ask critical questions about statistical statements?*

There are times when I feel that my subjects are gatekeeper courses rather then essential components of a well-rounded education, as when I see a student aspiring to be a nurse

*struggling*with logarithmic functions, and I wonder who ordered this, who has an interest in setting up this barrier between a dedicated and in many ways talented student and her choice of profession? On the other hand thinking of math in other terms than job training makes teaching it so much more interesting. I can happily create ridiculous word problems about pink dragons and syrup fountains, and remember that "relevance" for a teenager need not have much to do with usefulness in some narrow technical sense. The "relevance" of a math problem may have to do with the investment in completing it faster than the neighboring team, the joy of working together with a classmate on it, or the beauty of the graph when it is done in colored pencil.

*If we take the democratic argument seriously, maybe we should consider replacing most of Geometry with Applied Statistics as a graduation requirement and make formal, proof-based Geometry a college prep class rather than a course mandated for all citizens.