Sunday, December 9, 2007

Language acquisition and learning math

Just finished a class necessary toward clearing the credential, and in that context I've finally read through an actual textbook on teaching English learners, which was good. Thinking about strategies for teaching vocabulary, though, I think it would be helpful to distinguish between the kinds of words that can be taught by pointing to whatever the word refers to on the one hand, and the kinds of words where the referent of the word needs to be constructed from scratch. Learning math involves more of the latter kind, and the strategies involved for internalizing such words are so different from those required for the former kind that it seems misleading to even subsume the two under the same header of "vocabulary acquisition."

One lesson that I have not been very successful at teaching involves a lot of vocabulary of both kinds, so for one assignment I focused on this lesson on classifying numbers. I've been puzzled at how poorly my classes have done on this topic. Some of the problems, such as the inability to remember what "integer" means, would be addressed with the usual bag of vocab learning tricks of flash cards, personal dictionaries, repetition, and repetition - this would be a word of the first kind, where the learning task is simply to memorize a letter combination and to link the word to its referent. However, words such as "equivalence," "inclusion," and even "all," "some" and "none" are also necessary, and maybe such content area concepts are all so unique that no list of teaching approaches can be made - on the other hand, I'd be surprised if the field of linguistics does not provide some broad, general insights on acquiring such words. However, whatever these insights might be, they have not trickled down to the teacher ed classes I've taken, at least not while I've been paying attention.

All Algebra I and Algebra II textbooks I've seen introduce the topic of classifying numbers by presenting a Venn Diagram of the usual sets, and provide no further clarification about how Venn Diagrams work, assuming, it would seem, that this visual is self-explanatory and can replace a verbal discussion of basic ideas of sets. However, students do not generally know how Venn Diagrams work. In trying to clarify the idea I have asked multiple Algebra I and Algebra II classes to draw Venn Diagrams of statements such as
  1. All high school students study math.
  2. Some high school students study music.
  3. No high school students are senior citizens.
Generally, students can deal with statement 2, but when presented with diagrams for statements 1 and 3 they are not only initially confused - they also frequently express disagreement, claiming that they have learned differently in English class. Basically, the only type of Venn Diagrams they are comfortable with are those for intersecting sets. So much for leaving interpretation of these diagrams to the learners.

After class discussions and multiple examples of Venn Diagrams for situations where one set is included in the other or where the sets are disjunct, a majority of students will get the point and draw accurate diagrams for natural language statements. However, many students do not get to this point, at least not in Algebra I, and will continue to diagram "All x is y" by drawing the circle for y inside the the circle for x, and I am wondering why. I have not yet tried to find out whether it is mainly a matter of not matching the appropriate visual representations with the words "all," "some" or "none," and whether they would be able to correctly answer questions about sets of numbers based on sentences alone. I have basically emphasized translation between Venn Diagrams and statements. Whatever the problem might be, I have a greater appreciation for how hard it must be to learn high school math without a pretty strong grasp of pretty abstract words for referents that can not simply be pointed to.

Saturday, December 1, 2007

Love and Graph Paper

The last block on Friday is not the best time for Algebra, the girls are giggly and unfocused, they blurt out random things as weekend thoughts flit through their unwinding minds, and I am tired too and thoughtlessly answer the question when it comes from out of left field:

- Ms. C., are you married?

- Uhuh.

Murmur and wide grins all around. My brain starts scanning for ways of getting us back on task again as the girls start hurling follow-up questions:

- Ms. C., Ms. C., do you love him?

I wrongly see an opportunity for getting back to Algebra, and nod enthusiastically.

- Yeah. He's really good at math. I love him.

It's a wildfire of hilarity around the room - how could I not have anticipated that? I make a stern face and tell them to settle down. They actually do get serious for a moment, then ask again:

- Ms. C, how did he propose? Come on, please, tell how he proposed!

- No more questions now. If you're really focused for the rest of the block, you can ask off-topic questions during the last three minutes of class.

That's probably not a management strategy in accordance with the books. However, the girls do actually get into their graphing assignment then, and are pretty productive for a Friday afternoon. But they don't forget, and when the bell rings and they're free to go home they're asking again. I'm mystified by their romanticism. Seriously, who's into proposal styles when they're 15?

- What if I proposed to him?

Bright-eyed astonishment, and a wave of surprised laughter: - You did? That's cool! What did you say?

- Maybe I wrote a letter instead.
- On graph paper.

I shake my head at the uproar.

- You don't seriously believe everything I say?

The girls troop out and leave for the weekend, and I find myself grinning while recalling the dialog, as well as remembering those elements that make up the true half of the story. We have an anniversary today.